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Abstract. The use of radioactive ion beams is shown to offer the possibility to study collective pairing
states at high excitation energy, which are not usually accessible with stable projectiles because of large
energy mismatch. In the case of two-neutron stripping reactions induced by 6He, we predict a population
of the giant pairing vibration in 208Pb or 116Sn with cross-sections of the order of a millibarn, dominating
over the mismatched transition to the ground state.

PACS. 21.60.Ev Collective models – 25.60.Je Transfer reactions

1 Introduction

Large efforts have been recently dedicated to the study
of different aspects of reaction mechanism in collisions
induced by weakly bound radioactive beams. The long
tails of the one-particle transfer form factors due to the
weak binding, associated with the possibility of unusual
behaviour of pairing interaction in diluted systems, has
raised novel interest in the possibility of studying the
pair field via two-particle transfer processes with unsta-
ble beams [1]. On the other hand, in transfer reactions in-
duced by weakly bound projectiles on stable targets, the
Q-values for the low-lying states will be very large (typi-
cally of the order of 10–15 MeV for the (6He,4He) strip-
ping reaction). This will strongly hinder these processes
for reactions where the semi-classical optimum matching
conditions apply, as it is the case of bombarding energies
around the Coulomb barrier on heavy target nuclei. Higher
bombarding energies, where the matching conditions are
less stringent, may on the other hand not be suitable be-
cause of large break-up cross-sections. The same matching
conditions will favour instead the population of highly ex-
cited states, as the giant pairing vibrations (GPV), and
the use of radioactive ion beams (RIB) may therefore be-
come instrumental in offering the opportunity of study-
ing nuclear-structure aspects that are not usually accessi-
ble with stable projectiles. These giant pairing vibrations
are in fact predicted [2] to have strong collective features,
but their observation may have so far failed [3] because
of large mismatch in reactions induced by protons or tri-
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tons, at variance to the case of the low-lying pairing vibra-
tions, which have been intensively and successfully stud-
ied around closed-shell nuclei in two-particle transfer reac-
tions [4]. All these 0+ states are associated with vibrations
of the Fermi surface and are described in a microscopic ba-
sis of the shell model as correlated two-particle–two-hole
states. In the case of the giant pairing vibrations the ex-
citation involves the promotion of a pair of particles (or
holes) in the next major shell (hence an excitation energy
around 2�ω) and is expected to display a collective pairing
strength comparable with the low-lying vibrations. Also in
the case of superfluid systems in an open shell the system
is expected to display a collective high-lying state, that in
this case collects its strength from the unperturbed two-
quasiparticle 0+ states with energy 2�ω. To investigate
this possibility we made estimates of cross-sections to the
giant pairing vibrations in two-particle transfer reactions,
comparing the cases of bound or weakly bound projectiles.
As examples we have considered the case of (14C,12C),
from one side, and the case of (6He,4He) as representative
of a reaction induced by a weakly bound ion. As targets,
we have chosen the popular cases of the lead and tin re-
gions (so considering both “normal” and “superfluid” nu-
clei). To perform the calculation, we will first evaluate the
response to the pairing operator in the RPA, including
both the low-lying and high-lying pairing vibrations. As a
following step we will then construct two-neutron trans-
fer form factors, using the “macroscopic” model for pair
transfer processes. Finally, estimates of cross-sections will
be given using standard DWBA techniques. As we will
see, in the case of the stripping reaction induced by 6He,
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the population of the GPV is expected to display cross-
sections of the order of a millibarn, dominating over the
mismatched transition to the ground state.

The paper is organized as follows. In the next section
we discuss the theoretical formalism used for normal and
for superfluid nuclei. In sect. 3 we recall the basics aspects
of the macroscopic form factors for two-particle transfer
reactions and in sect. 4 we display the results of calcula-
tions for the paradigmatic examples of 208Pb and 116Sn.

2 The pairing response and the giant pairing
vibration

A simple way of displaying the amount of pairing correla-
tions is in terms of the pair transfer transition densities [5].
These are defined as the matrix element of the pair den-
sity operator connecting the ground state in nucleus A
with the generic 0+ state |n〉 in nucleus A ± 2, namely

δρP(r) = 〈n|ρ̂P|0〉, (1)

where the generalized density operator is given by

ρ̂P(r) =
∑
α

√
2j + 1
4π

Rα(r)Rα(r)([a†
αa†

α]00 + [aαaα]00).

(2)
Here Rα(r) are the radial wave functions of the α = {nlj}
level and the sum runs over both particle and hole lev-
els. The pair transfer strength to each final state can be
obtained from the corresponding pair transfer transition
density by simple quadrature, namely

βP =
∫

4πr2δρPdr. (3)

For normal systems around closed shell the strong
L = 0 transition follows a vibrational scheme, where the
correlated pair of fermions (pairing phonon) change by
one [6]. In this case, there are two types of phonons asso-
ciated with the stripping and pick-up reactions. The two-
particle collective state is called “addition” pairing phonon
while the two-holes correlated state is known as “removal”
pairing phonon. From a microscopic point of view the two
kind of phonons, corresponding to the (A ± 2) nuclei can
be described in terms of the two-particle (two-hole) states
of the Tamm-Dancoff approximation (TDA) or in a better
way by a random phase approximation (RPA). We start
from an Hamiltonian with a monopole pairing interaction

H =
∑

j

εja
†
jaj − G4πP †P, (4)

where

P † =
∑

j1≤j2

M(j1, j2)√
1 + δj1j2

[
a†

j1
a†

j2

]
00

. (5)

Here the a†
j creates a particle in an orbital j, where j

stands for all the needed quantum numbers of the level.

The constant G is the strength of the pairing interaction
and the coefficients M(j1, j2) are:

M(j1, j2) =
〈j1||f(r)Y00(θ, φ)||j2〉√

1 + δj1j2

, (6)

where the detailed radial dependence of f(r) is taken to
be of the form rL and in our case is a constant since we
are dealing only with L = 0 states. The pairing phonons
are defined for closed-shell nuclei as

|n, 2p〉 = Γ †
n,2p|0〉RPA =(∑

k

Xn(k)[a†
ka†

k]00 +
∑

i

Yn(i)[a†
ia

†
i ]00

)
|0〉RPA

|n, 2h〉 = Γ †
n,2h|0〉RPA =Γn,2p|0〉RPA =(∑

i

Xn(i)[aiai]00+
∑

k

Yn(k)[akak]00

)
|0〉RPA,

(7)

where k(i) stands for levels above (below) the Fermi level.
The index j runs over both particle and hole levels. We
have indicated with |0〉RPA the correlated RPA vacuum.
It represents the ground state with respect to the boson
annihilation operator Γ †

n,2h|0〉RPA = 0. The definitions of
Xn and Yn (called forward and backward amplitudes) are
the standard ones and come from the solution of the RPA
equation. They may be found in [6]. Within this model
the pair transfer strength associated with each RPA state
is microscopically given by

βPn =
∑

j

√
2j + 1[Xn(j) + Yn(j)]. (8)

In fig. 1a we display the predicted pairing response in the
case of 206Pb, namely two-neutron holes with respect to
the double magic 208Pb. The set of single-particle levels
that has been used in the RPA calculation, was obtained
using the spherical harmonic-oscillator levels with correc-
tions due to the centrifugal and spin-orbit interactions [7]

E

�ω
= N +

3
2
− µ

(
l(l + 1) − N(N + 3)

2

)
+ K , (9)

K =
{−κl , for j = l + 1/2 ,
−κ(l + 1) , for j = l − 1/2 ,

where �ω = 41A− 1
3 , A is the mass number of the nu-

cleus, N is the principal quantum number and j, l are the
total and orbital angular momentum quantum numbers,
respectively. The quantities κ and µ are parameters cho-
sen to obtain the best fit for each nucleus [8]. We have
included in the calculation all the single-particle levels
starting from N = 0 up to 10. This set is expected to
be good enough for our calculation of the giant pairing
resonance, except for the levels around the Fermi surface.
In the lead region we prefer to use experimental values for
the shells just above and below the Fermi surface [9,10].
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Fig. 1. Pairing response for the removal (a) and addition (b)
mode in 208Pb. The ground-state transition and the candidate
for GPV are evidenced.

Figure 1a shows, in addition to the strong collectivity asso-
ciated with the ground-state transition, a strong collective
state with about half of the g.s. strength at high excita-
tion energy, around 16 MeV, which can be interpreted as
the giant pairing vibration. Similar situation is shown in
fig. 1b for the corresponding two-neutron addition states
in the 210Pb. Again one may interpret the strength at
about 12 MeV as associated with the giant mode. Note
that in both addition and removal cases, the contribution
of the backward amplitudes to the wave function is found
to be roughly equivalent to 5–10% in the ground state,
while in the GPV this contribution reduces to less than
1%.

We consider now the case of superfluid spherical nu-
clei. In this case we make a BCS transformation of the
Hamiltonian defined in eq. (4) changing from particle to
quasiparticle operators, introducing the usual occupation
parameters. We start from a single-quasiparticle Hamilto-
nian plus a two-quasiparticle interaction corresponding to
the residual H22 + H40 of the pairing force

H =
∑

j

Ejα
†
jαj + 2πG

∑
j1j2

M(j1, j1)M(j2, j2)

·
{

(U2
j1U

2
j2 + V 2

j1V
2
j2)[α

†
j1

α†
j1

]00[αj2αj2 ]00

−U2
j1V

2
j2 [α

†
j1

α†
j1

]00[α
†
j2

α†
j2

]00

−V 2
j1U

2
j2 [αj1αj1 ]00[αj2αj2 ]00

}
, (10)

where

α†
j = Uja

†
j − Vjaj̄ , (11)

U2
j =

1
2

(
1 +

ε̃j

Ej

)
, (12)

V 2
j =

1
2

(
1 − ε̃j

Ej

)
. (13)

The energies Ej =
√

ε̃2j + ∆2 are the quasiparticle ener-
gies, and ε̃j = ε − λ are the single-particle energies with
respect to the chemical potential λ and ∆ is the BCS gap.
As usual we have defined aj̄ ≡ a ¯jm = (−1)j−maj,−m.

For superfluid systems the addition and removal RPA
phonons cannot be treated separately. The dispersion re-
lation, that relates the strength of the interaction with the
energy roots of the RPA, becomes a two-by-two determi-
nant. From the RPA equations

Γ †
n =

∑
j

(
Xn(j)[α†

jα
†
j ]00 + Yn(j)[αjαj ]00

)
, (14)

[
H,Γ †

n

]
= ωnΓ †

n, (15)

we can obtain the following factors:

x=
∑

j1≤j2

|M(j1j2)|2
[

U2
j1

U2
j2

Ej1 +Ej2−ωn
+

V 2
j1

V 2
j2

Ej1 +Ej2 +ωn

]
, (16)

y =
∑

j1≤j2

|M(j1j2)|2
[

V 2
j1

V 2
j2

Ej1 +Ej2−ωn
+

U2
j1

U2
j2

Ej1 +Ej2 +ωn

]
, (17)

z =
∑

j1≤j2

|M(j1j2)|2(Uj1Vj2Uj2Vj1)

×
[

1
Ej1 + Ej2 − ωn

+
1

Ej1 + Ej2 + ωn

]
, (18)

and the dispersion relation is in this case∣∣∣∣ (1 − 4πGx) , 4πGz
4πGz , (1 − 4πGy)

∣∣∣∣ = 0. (19)

It can be shown that ω = 0 is the solution of this equation
and correspond to the Goldstone boson corresponding to
the breaking of the number of particle symmetry. Once we
have obtained the energies ωn of the different RPA roots,
we can write the components of the RPA phonon in the
form

Xn(j, j) =
4πGM(j, j)

Ej + Ej − ωn

(
U2

j + V 2
j

4πGz

(1 − 4πGy)

)
Λn ,

Yn(j, j) =
4πGM(j, j)

Ej + Ej + ωn

(
U2

j

4πGz

(1 − 4πGy)
+ V 2

j

)
Λn ,

(20)
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where Λn is determined by normalizing the phonon corre-
sponding to the n-th root of the RPA. The normalization
condition reads ∑

j

[X2
n(j) − Y 2

n (j)] = 1. (21)

Finally, we can obtain for each state n the pairing strength
parameter βP with the following formulae:

βP(2p) =
∑

j

√
2j + 1〈n|[a†

ja
†
j ]00|0〉 =

∑
j

√
2j + 1[U2

j Xn(j) + V 2
j Yn(j)],

βP(2h) =
∑

j

√
2j + 1〈n|[ajaj ]00|0〉 =

∑
j

√
2j + 1[V 2

j Xn(j) + U2
j Yn(j)]. (22)

From the two equations above one recovers the four contri-
bution to formula (8) by putting U = 0 and V = 1 when j
is below the Fermi level and by putting U = 1 and V = 0
when j is above. The predictions of the pairing strength
distribution for the superfluid system 116Sn are shown in
the two panels of fig. 2. For the calculation we have used
the single-particle levels from ref. [11]. These last ones
have been proved to give good results in BCS calculations
using a pairing strength G = g/A, where g � 20MeV.
We assume that the rest of the levels have occupation
probability 1 (0) if they are far below (above) the Fermi
surface. The change of the single-particle energies around
the Fermi surface has been done, in both cases, taking care
of keeping the energy centroids of the exchanged levels in
the same position. The figure clearly shows the occurence
of high-lying strength which can be associated with the gi-
ant pairing vibration. Note that, with respect to the case
of 208Pb, there is a minor fragmentation of the strength
both in the low-lying and in the high-lying energy region.

3 Macroscopic form factors for two-particle
transfer reactions

The description of the reaction mechanism associated with
the transfer of a pair of particles in heavy-ion reactions
has always been a rather complex issue. In the limit in
which the field responsible for the transfer process is the
one-body field generated by one of the partners of the re-
actions, at least for simple configurations the leading order
process is the successive transfer of single particles. In this
framework the collective features induced by the pairing
interaction arise from the coherence of different paths in
the intermediate (A + 1, A − 1) channel due to the cor-
relation present in the final (A + 2) and (A − 2) states.
The actual implementation of such a scheme may turn out
not to be a simple task, due to the large number of active
intermediate states, and the use of a simpler approach
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Fig. 2. Pairing response for the removal (a) and addition (b)
mode in 116Sn. The ground-state transition and the candidate
for GPV are evidenced.

may be desirable. This is offered, for example, by the
“macroscopic model” for two-particle transfer reactions,
that parallels the formalism used to describe the inelastic
excitation of collective surface modes. In that case, as an
alternative to the (more correct) microscopic description
based on a superposition of particle-hole excitations, one
has traditionally resorted to collective form factors of the
form [12]

Fλ(r) = βλR
dU

dr
, (23)

in terms of the radial variation of the ion-ion optical poten-
tial U induced by the surface vibrations, with the strength
parameter βλ obtained from the strength of the B(Eλ)
transition. In the case of the pair transfer, the correspond-
ing vibration is the fluctuation of the Fermi surface with
respect to the change in the number A of particles, and
the corresponding form factor FP is assumed to have the
parallel form [5]

FP(r) = βP
dU

dA
, (24)

in terms of the “pairing deformation” parameter βP asso-
ciated with that particular transition, defined in the previ-
ous section. The assumption of simple scaling law between
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nuclear radius R and mass number A allows to rewrite the
two-particle transfer form factor into an expression which
is formally equivalent to the one for inelastic excitation,
namely

FP(r) =
βP

3A
R

dU

dr
. (25)

This formalism has been successfully applied to quite a
number of two-particle transfer reactions [13,14]. As in the
case of inelastic excitations, macroscopic collective form-
factors may in some cases only give a rough estimate to the
data, requiring more elaborate microscopic descriptions.
Nonetheless, the use of simple macroscopic form factors
is of unquestionable usefulness in making predictions, in
particular in cases, as the one we are discussing, where
experimental data are not yet available and estimates are
needed in order to plan future experiments.

4 Applications: estimates of two-neutron
transfer cross-sections

In order to evidence the possible role of unstable beams in
the study of high-lying pairing states, we compare in this
section two-particle transfer reactions induced either by a
traditionally available beam (e.g., the (14C, 12C)) or by a
more exotic beam (e.g., the reaction (6He, 4He)). As a tar-
get, we have considered the two cases of 208Pb and 116Sn,
as representative cases of normal and superfluid systems
in the pairing channels. In both cases, we have considered
the full pairing L = 0 response, e.g., all transitions to 0+

states in 210Pb and 118Sn, as described in sect. 2. The
Q-values corresponding to the transitions to the ground
states and to the GPV states are displayed in table 1.
For each considered state the two-particle transfer cross-
section has been calculated on the basis of the DWBA
(using the code Ptolemy [15]) employing the macroscopic
form factor described above, with a strength parameter
as resulting from the RPA calculation. For the ion-ion op-
tical potential, the standard parameterization of Akyuz-
Winther [16] has been used for the real part, with an imag-
inary part with the same geometry and half its strength. In
all cases, the bombarding energy has been chosen in order
to correspond, in the center-of-mass frame, to about 50%
over the Coulomb barrier. The angle-integrated L = 0 ex-
citation function is shown in fig. 3b as a function of the
excitation energy Ex for the 208Pb(14C,12C)210Pb reac-
tion at Ecm = 95 MeV. For a more realistic display of
the results, the contribution of each discrete RPA state
is distributed over a Lorentzian with Γ = kE2

x, with k
adjusted to yield a width of 4MeV for the giant pair-
ing vibration. As the figure shows, the large (negative)
Q-value associated with the region of the GPV (see ta-
ble 1) completely damps its contribution, and the excita-
tion function is completely dominated by the transition to
the ground state and the other low-lying states. The situa-
tion is very different for the 208Pb(6He,4He)210Pb reaction
at Ecm = 41 MeV, whose excitation function is shown in
fig. 3a. In this case the weak-binding nature of 6He pro-
jectile leads to a mismatched (positive) Q-value for the

Table 1. Q-values for ground-state and GPV transitions. The
target (column) and projectile (row) are specified.

14C → 12C 6He → 4He

116Sn → 118Sng.s. 3.15 MeV 15.298 MeV
208Pb → 210Pbg.s. −4 MeV 8.148 MeV
116Sn → 118SnGPV −6.746 MeV 5.402 MeV
208Pb → 210PbGPV −15.81 MeV −3.662 MeV
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Fig. 3. Differential cross-sections as a function of the excita-
tion energy for the two reactions: a) 208Pb(6He,4He)210Pb, and
b) 208Pb(14C,12C)210Pb. See text for details.

ground-state transition (Qg.s. = 8.148 MeV), favouring
the transfer process to the high-lying part of the pairing
response. In this case the figure shows that, in spite of
a smaller pairing matrix element, the transition to the
GPV is of the same order of magnitude of the ground-
state transfer (1.8 mb for g.s. and 3.1 mb for the GPV).
Note that a total cross-section to the GPV region of the
order of some millibarn should be accessible with the new
large-scale particle-gamma detection systems.

A similar behaviour is obtained in the case of a tin
target. In fig. 4 the corresponding excitation functions
for the 116Sn(14C,12C)118Sn reaction (at Ecm = 69 MeV)
and the 116Sn(6He,4He)118Sn reaction (at Ecm = 40 MeV)
are compared. Now the transition to the GPV dominates
over the ground-state transition when using an He beam
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Fig. 4. Differential cross-sections as a function of the excita-
tion energy for the two reactions: a) 116Sn(6He,4He)118Sn, and
b) 116Sn(14C,12C)118Sn. The comparison between the GPV
and the ground state clearly shows the different strength. No-
tice the different vertical scale with respect to fig. 3.

(0.4 mb for g.s. and 2.4 mb for the GPV). From a com-
parison with the RPA strength distributions of figs. 1 and
2 one can see that the giant pairing vibrations is defi-
nitely favoured by the use of an 6He beam instead of the
more conventional 14C one, because the transition to the
ground state is hindered, while the GPV is enhanced (or
not changed) because of the effect of the Q-value.

5 Conclusions

The role of radioactive-ion beams for studying different
features of the pairing degree of freedom via two-particle
transfer reactions is underlined. A 6He beam may allow an
experimental study of high-lying collective pairing states,
that have been theoretically predicted, but never seen
in measured spectra, because of previously unfavourable
matching conditions. The modification in the reaction
Q-value, when passing from 14C to 6He, that is a di-
rect consequence of the weak-binding nature of the latter
neutron-rich nucleus, is the reason of the enhancement of
the transition to the giant pairing vibration with respect
to the ground state.
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